DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
Matheathlon
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Dr. Karsten Tabelow

karsten.tabelow@wias-berlin.de


Projects as a project leader

  • OT7

    Model-based geometry reconstruction of quantum dots from TEM

    Dr. Thomas Koprucki / Dr. Karsten Tabelow

    Project heads: Dr. Thomas Koprucki / Dr. Karsten Tabelow
    Project members: Anieza Maltsi
    Duration: -
    Status: running
    Located at: Weierstraß-Institut

    Description

    Semiconductor quantum dots are nanostructures that form a technological path to innovative optoelectronic and photonic devices. Among them single quantum dots are promising candidates for single and entangled photon sources which are of importance for future quantum technologies such as quantum information processing, quantum cryptography, and quantum metrology. The growth of QDs with desired electronic properties would highly benefit from the assessment of QD geometry, distribution, and strain profile in a feedback loop between growth and analysis of their properties. In this project, we will therefore develop a novel 3D model-based geometry reconstruction (MBGR) of QDs. This will include an appropriate model for the QD configuration in real space, a characterization of corresponding simulated TEM images as well as a statistical procedure for the estimation of QD properties and classification of QD types based on acquired TEM image data. The MBGR approach will enable a high-throughput characterization of QD samples by TEM via QD geometry, distribution and strain field. Furthermore, it will provide a guiding example for mathematically enhanced microscopy for the reconstruction of other nanoscale objects in different applications.

    https://www.wias-berlin.de/projects/ECMath-OT7/