MATHEON Research Center
DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Sebastian Schenker

schenker@zib.de


Research focus

Multi-Objective Optimisation and Integer Programming

Projects as a member

  • MI9

    Solving multi-objective integer programs

    Prof. Dr. Ralf Borndörfer / Prof. Dr. Martin Skutella

    Project heads: Prof. Dr. Ralf Borndörfer / Prof. Dr. Martin Skutella
    Project members: Sebastian Schenker
    Duration: 01.06.2017 - 31.12.2017
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    Multi-objective optimization is oncerned with optimizing several conflicting objectives at once.It can be considered as a generalization of single-objective optimization with numerous applications that range from health care, sustainable manufacturing, economics and social sciences to traffic and logistics. Roughly speaking, basically any real-world application that can be modeled as an optimization problem might be considered as a multi-criteria optimization problem if enough data is available. In contrast to the single-objective case, it is generally impossible to compute a single solution that optimizes all objectives simultaneously. Instead, we have to deal with trade-offs and distinguish between non-dominated points that cannot be improved upon (on at least one objective without getting worse at another) and dominated points that can be improved upon. In this project we pursue a new concept to partition the set of non-dominated points. This approach enables us to solve general integer programs by combining the research goals of achieving theoretical efficiency, of implementing practical algorithmic approaches and of being able to approximate the entire set of non-dominated points via a subset of non-dominated points with some kind of approximation guarantee. Furthermore, we aim at making all project results available to the optimization community via implementations to PolySCIP, our solver for multi-objective linear and integer programs.

    https://www.zib.de/projects/solving-multi-objective-integer-programs

Projects as a guest