DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Christoph von Tycowicz

Leiter der Arbeitsgruppe Geometric Data Analysis and Processing am ZIB

Zuse Institute Berlin
Takustraße 7
14195 Berlin
+49 (0) 30 84185350
vontycowicz@zib.de
Webseite


Projekte als Projektleiter

  • CH15

    Analysis of Empirical Shape Trajectories

    Hon.-Prof. Hans-Christian Hege / Prof. Tim Sullivan / Dr. Christoph von Tycowicz

    Projektleiter: Hon.-Prof. Hans-Christian Hege / Prof. Tim Sullivan / Dr. Christoph von Tycowicz
    Projekt Mitglieder: Dr. Esfandiar Navayazdani
    Laufzeit: 01.06.2017 - 31.12.2019
    Status: laufend
    Standort: Freie Universität Berlin

    Beschreibung

    The reconstruction of discretized geometric shapes from empirical data, especially from image data, is important for many applications in medicine, biology, materials science, and other fields. During the last years, a number of techniques for performing such geometrical reconstructions and for conducting shape analysis have been developed. An important mathematical concept in this context are shape spaces. These are high-dimensional quotient manifolds with Riemannian structure, whose points represent geometrical shapes. Using suitable metrics and probability density functions on such manifolds, distances between shapes or statistical shape priors (for utilization in reconstruction tasks) can be defined. A frequently encountered situation is that instead of a set of discrete shapes a series of shapes is given, varying with some parameter (e.g. time). The corresponding mathematical object is a trajectory in shape space. For many analysis questions it is helpful to consider the shape trajectories as such (instead of individual shapes) - often together with co-varying parameters. The focus of this project is to develop new mathematical methods for the analysis, processing and reconstruction of empirically defined shape trajectories. By treating the trajectories as curves in shape space, we plan to exploit the rich geometric structure inherent to these spaces. In consequence, we expect the derived schemes to benefit from a compact encoding of constraints and a superior consistency as compared to their Euclidean counterparts. To develop new mathematical methods for the analysis, processing and reconstruction of empirically defined shape trajectories exploiting the rich geometric structure of shape space.

    http://www.zib.de/projects/analysis-empirical-shape-trajectories