DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Marian Moldenhauer

Scientific employee in the ECMath project CH9

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Takustr. 7
14195
+49 (0) 30 84185 167
moldenhauer@zib.de
Website


Research focus

Numerical mathematics,
Ordinary/partial differential equations,
Optimization,
Optimal control,
Mechanics

Projects as a member

  • CH20

    Stochasticity driving robust pattern formation in brain wiring

    Dr. Max von Kleist / Dr. Martin Weiser

    Project heads: Dr. Max von Kleist / Dr. Martin Weiser
    Project members: Marian Moldenhauer / Maureen Smith
    Duration: 01.06.2017 - 31.12.2019
    Status: running
    Located at: Freie Universität Berlin

    Description

    During brain development, synaptic connection patterns are formed in an extremely robust manner. As the interconnection patterns are much too complex to be encoded directly in the genome, they must emerge from simpler rules. In this project we investigate mechanistic stochastic models of axon growth and filopodial dynamics, checking whether their simulation leads to connection patterns and dynamics as observed in vivo, and with the same robustness.

    http://www.zib.de/projects/BrainWiring
  • CH9

    Adaptive algorithms for optimization of hip implant positioning

    Dr. Martin Weiser / Dr.-Ing. Stefan Zachow

    Project heads: Dr. Martin Weiser / Dr.-Ing. Stefan Zachow
    Project members: Marian Moldenhauer
    Duration: -
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    This project aims at a software environment supporting computer-assisted planning for total hip joint replacement by suggesting implant positions optimized for longevity of bone implants. The aim is to pre-operatively assess stress distribution in bone and to determine an optimal implant position with respect to natural function and stress distribution to prevent loosening, early migration, stress shielding, undesired bone remodeling, and fracture. Increasing the longevity of implants will help to enhance quality of life and reduce the cost of health care in aging societies. Focus of the research is the development of efficient optimization algorithms by adaptive quadrature of the high-dimensional space of daily motions and appropriate choice of tolerances for the underlying dynamic contact solver.

    http://www.zib.de/projects/adaptive-algorithms-optimization-hip-implant-positioning

Projects as a guest