DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Martin Weiser

Head of Department Numerical Mathematics at ZIB

Zuse Institute Berlin
Takustr. 7
14195 Berlin
+49 (0) 30 +49 (0)30 84 185 170
weiser@zib.de
Website


Research focus

numerical mathematics
partial differential equations
optimization
medical applications

Projects as a project leader

  • CH20

    Stochasticity driving robust pattern formation in brain wiring

    Dr. Max von Kleist / Dr. Martin Weiser

    Project heads: Dr. Max von Kleist / Dr. Martin Weiser
    Project members: Marian Moldenhauer / Maureen Smith
    Duration: 01.06.2017 - 31.12.2019
    Status: running
    Located at: Freie Universität Berlin

    Description

    During brain development, synaptic connection patterns are formed in an extremely robust manner. As the interconnection patterns are much too complex to be encoded directly in the genome, they must emerge from simpler rules. In this project we investigate mechanistic stochastic models of axon growth and filopodial dynamics, checking whether their simulation leads to connection patterns and dynamics as observed in vivo, and with the same robustness.

    http://www.zib.de/projects/BrainWiring
  • CH8

    X-ray based anatomy reconstruction with low radiation exposure

    Hon.-Prof. Hans-Christian Hege / Dr. Martin Weiser / Dr.-Ing. Stefan Zachow

    Project heads: Hon.-Prof. Hans-Christian Hege / Dr. Martin Weiser / Dr.-Ing. Stefan Zachow
    Project members: Dennis Jentsch
    Duration: -
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    Medical imaging is essential in diagnostics and surgery planning. For representation of bony structures different imaging modalities are used; the leading methods are X-ray projection (projectional radiography) and CT. Disadvantage of these imaging techniques is the ionization caused by X-rays, particularly in CT, where the dose is 250-500 times higher than in classic X-ray projection. From the clinical perspective therefore one would like to replace CT acquisitions by a few possible X-ray projections. The project deals with the ill-posed inverse problem of 3D reconstruction of bony structures from 2D radiographs. Virtual radiographs are generated from virtual bone structure models; these are compared with clinical patient images and incrementally changed until a sufficiently accurate bone model is found whose virtual projections fit to the measured data. By using a statistical shape model as prior knowledge it is possible to formulate a well-posed optimization problem in a Bayesian setting. Using gradient methods and multilevel/multiresolution methods for both the reconstruction parameters and image data, good computational performance is achieved. Uncertainty quantification techniques can be applied to describe the spatially varying accuracy of the reconstructed model. Finding best X-ray projections (recording directions) minimizing both uncertainty and radiation exposure leads to a design of experiments problem. Two flavors of this design optimization are considered: An all-at-once approach finding the best image acquisition setup before any X-ray projections are performed, and a sequential approach determining the best next projection direction based on the accumulated knowledge gained from the previously taken images.

    http://www.zib.de/projects/x-ray-based-anatomy-reconstruction-low-radiation-exposure
  • CH9

    Adaptive algorithms for optimization of hip implant positioning

    Dr. Martin Weiser / Dr.-Ing. Stefan Zachow

    Project heads: Dr. Martin Weiser / Dr.-Ing. Stefan Zachow
    Project members: Marian Moldenhauer
    Duration: -
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    This project aims at a software environment supporting computer-assisted planning for total hip joint replacement by suggesting implant positions optimized for longevity of bone implants. The aim is to pre-operatively assess stress distribution in bone and to determine an optimal implant position with respect to natural function and stress distribution to prevent loosening, early migration, stress shielding, undesired bone remodeling, and fracture. Increasing the longevity of implants will help to enhance quality of life and reduce the cost of health care in aging societies. Focus of the research is the development of efficient optimization algorithms by adaptive quadrature of the high-dimensional space of daily motions and appropriate choice of tolerances for the underlying dynamic contact solver.

    http://www.zib.de/projects/adaptive-algorithms-optimization-hip-implant-positioning
  • CH-AP11

    Wear Simulation of Knee Implants and Shape Optimization for Patient-group specific Wear Minimization

    Prof. Dr. Ralf Kornhuber / Dr. Martin Weiser

    Project heads: Prof. Dr. Ralf Kornhuber / Dr. Martin Weiser
    Project members: -
    Duration: 01.07.2013 - 30.12.2016
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    For the market admittance of joint implants, a standardized wear test has to be performed. During the design phase, similar tests are necessary as well. Those tests are very cost and time expensive. The project aims at the development of simulation and optimization methods for substituting some of the design phase tests by simulations. Additionally, the design process shall be accelerated by shape optimization, and the offered implants be tailored to the patient population by taking different patient groups into account.

    Focus of the work at ZIB is the long-time integration of wear trajectories. The implant geometry is modified due to wear, which in turn changes the wear rate. The evolution is determined by the wear of one load cycle, the simulation of which is computationally expensive. We develop adaptive methods for controlling tolerance, order, and time step for an efficient simulation of many load cycles.

    http://www.zib.de/projects/wear-simulation-knee-implants-and-shape-optimization-patient-group-specific-wear-minimization
  • GV-AP8

    In vivo and in silico analyses in humans: Cartilage loading of patients' individual knees - the role of soft tissue structures

    Hon.-Prof. Hans-Christian Hege / Dr. Martin Weiser

    Project heads: Hon.-Prof. Hans-Christian Hege / Dr. Martin Weiser
    Project members: -
    Duration: 01.10.2014 - 31.01.2019
    Status: completed
    Located at: Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    While a relationship between knee joint laxity and osteoarthritis is often assumed, the exact mechanism is not yet fully understood. It is not clear how stabilization by either the cross ligaments or muscle forces affect the local cartilage stress and strain. We develop a comprehensive analysis tool for individual patients. On one hand, we couple a dynamic multibody model to a quasistatic contact solver for the cartilage and validate it against in vivo measurement data from patient groups at Charite. On the other hand, we develop visualization and statistical analysis tools that allow to understand the impact of anatomical variation and cross ligament loss on the mechanical loading of cartilage and correlate this to osteoarthritis progression.

    http://www.zib.de/projects/vivo-and-silico-analyses-humans-cartilage-loading-patients%E2%80%99-individual-knees-%E2%80%93-role-soft-tissue