DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Prof. Dr. Dr. h.c. mult. Martin Grötschel

p@bbaw.de


Projects as a project leader

  • MI-AP5

    Combinatorial switching for routing gas flows

    Prof. Dr. Dr. h.c. mult. Martin Grötschel / Dr. Benjamin Hiller / Prof. Dr. Caren Tischendorf

    Project heads: Prof. Dr. Dr. h.c. mult. Martin Grötschel / Dr. Benjamin Hiller / Prof. Dr. Caren Tischendorf
    Project members: -
    Duration: 01.10.2014 - 30.06.2018
    Status: completed
    Located at: Humboldt Universität Berlin / Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    The goal of this subproject is to develop algorithmic fundamentals for the efficient treatment of switching decisions in gas networks. In particular, this involves the modelling and algorithmics of the switching operations in compressor stations, since these pose a significant source of modelling and runtime complexity. The set of feasible operating points of a compressor station is, in general, non-convex, in some circumstances even non-connected. However, it can be well approximated by the union of convex polyhedra. Hence, the treatment of such structures in MIPs and MINLPs will be the main focus of research in this subproject. While being motivated by the optimization of gas networks, the methods to be developed will be relevant for many applications of MIPs and MINLPs.
    Known techniques for modelling unions of polyhedra as the feasible set of a MIP rely on the inequality description of the underlying polyhedra. In contrast to this, another approach adapted to the geometric properties of the overall set can be considered. More precisely, the goal is to find and analyze a hierarchical description of a non-convex set that provides an as good as possible polyhedral relaxation on each level. This hierarchy can then be used by suitable branching strategies in the branch-and-bound procedure for solving MINLPs.
    In the long term, this subproject of SFB/TRR 154 is aiming at the development of real-time methods for obtaining combinatorial decisions. Furthermore, since the transient control of gas networks requires the successive solving of many similar MIPs/MINLPs, reoptimization techniques come into view that use known information from previous optimization problems in order to reduce running time. For these, a detailed analysis of the problem structure and a deeper understanding of the complex MIP/MINLP solving process will be an essential topic of research.

    http://trr154.fau.de/index.php/en/subprojects/a04e