DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Priv.-Doz. Dr. Konstantin Fackeldey

Mitglied Arbeitsgruppe Modellierung, Simulation und Optimierung in Natur- und Ingenieurwissenschaften

TU Berlin Institut für Mathematik
Straße des 17. Juni 136
10623 Berlin
+49 (0) 30 03031424924
fackeldey@math.tu-berlin.de
Webseite


Forschungsschwerpunkte

Numerische Mathematik
Markov State Models
Mathematischer Molekülentwurf

Projekte als Projektleiter

  • CH19

    Estimating Dynamics of Macromolecular Systems by Low Rank Approximation Techn

    Priv.-Doz. Dr. Konstantin Fackeldey / Prof. Dr. Frank Noé / Prof. Dr. Reinhold Schneider / Dr. Hao Wu

    Projektleiter: Priv.-Doz. Dr. Konstantin Fackeldey / Prof. Dr. Frank Noé / Prof. Dr. Reinhold Schneider / Dr. Hao Wu
    Projekt Mitglieder: -
    Laufzeit: 01.06.2017 - 31.12.2018
    Status: beendet
    Standort: Freie Universität Berlin / Technische Universität Berlin

    Beschreibung

    The dynamics of a molecular system can be described by the propagation of probabilities. The project aims at estimating coarse grained models of probability densities for molecular dynamics (MD) by nonlinear projections from a high dimensional space onto a low dimensional space. Molecular processes such as protein kinetics from all-atom simulations and the like suffer from the high dimensionality of the underlying space. To overcome this, projections from the high dimensional space onto a low dimensional space have been introduced, such that the system can be described on a coarser scale by using less degrees of freedom. In the present project we apply low rank tensor approximations, to tackle the curse of dimensions. We will use Observable Operator models (OOM) to estimate the dynamics using data from short time simulation.

    http://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/projects/ecmath19/index.html