DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Clemens Guhlke

PI in den Projekten SE17 und CH11

Weierstraß-Institut für Angewandte Analysis und Stochastik
Mohrenstraße 39
10117 Berlin
+49 (0) 30 03020372518


Forschungsschwerpunkte

Mathematisch Modellierung,
Nichtgleichgewichtsthermodynamik

Projekte als Projektleiter

  • CH11

    Sensing with Nanopores

    Dr. Jürgen Fuhrmann / Dr. Clemens Guhlke

    Projektleiter: Dr. Jürgen Fuhrmann / Dr. Clemens Guhlke
    Projekt Mitglieder: -
    Laufzeit: 01.06.2017 - 31.12.2018
    Status: beendet
    Standort: Weierstraß-Institut

    Beschreibung

    Sensing with nanopores is a promising new technology to analyze macromolecules like DNA strands by low cost/high speed measurements. The sensing device is constructed based on a nanopore embedded into a membrane which separates two electrodes. The system is filled with an electrolyte containing macromolecules to be analyzed. An electric potential is applied to the electrodes and induces an ionic current through the pore. Sensing is based on the observation that this ionic current is influenced by the geometrical configurations of the pore and of the macromolecules positioned within the pore. Under controlled movement of the macromolecule through the pore a characteristic time dependent current signal is generated, which is correlated to the structure of the pore and the macromolecule. Therefore nanopores can be used to count and even to characterize macromolecules in an electrolytic solution. n order to achieve a better understanding of the of phenomena that control the passing time of the analytes (macromolecules) through the nanopore, and to derive a relation between characteristic properties of the macromolecule and the generated current, the project will focus on three groups of tasks: Development of an appropriate nanopore model in the context of non-equilibrium thermodynamics, which accounts for the geometrical properties of pore and analyte, the charged boundary layers, ion diffusion and fluid flow. Combination and analysis of novel numerical discretization schemes, like pressure robust methods for fluid flow and novel finite volume discretization approaches for the PNP system in order to provide physically meaningful numerical models of the double layer structure and its impact on the fluid flow. Use of asymptotic analysis to derive reduced models, which include the relevant features of the complete thermodynamic model in different regimes.

    https://www.wias-berlin.de/projects/ECMath-CH11/
  • SE17

    Stochastic methods for the analysis of lithium-ion batteries

    Prof.Dr. Jean-Dominique Deuschel / Prof. Dr. Peter Karl Friz / Dr. Clemens Guhlke / Dr. Manuel Landstorfer

    Projektleiter: Prof.Dr. Jean-Dominique Deuschel / Prof. Dr. Peter Karl Friz / Dr. Clemens Guhlke / Dr. Manuel Landstorfer
    Projekt Mitglieder: Dr. Michelle Coghi
    Laufzeit: 01.06.2017 - 31.12.2019
    Status: laufend
    Standort: Technische Universität Berlin / Weierstraß-Institut

    Beschreibung

    Currently lithium-ion batteries are the most promising storage devices to store and convert chemical energy into electrical energy. An important class of modern lithium batteries contain electrodes that consist of many nano-particles. During the charging process of a battery, lithium is reversibly stored in the ensemble of the nano-particles and the particles undergo a phase transition from a Li-rich to a Li-poor phase. For this type of batteries a successful mathematical model was developed in the previous ECMath project SE8, based on a stochastic mean field interacting particle system. The new project focuses on modeling, analysis and simulations of extreme conditions in battery operation like fast charging, mostly full/empty discharge states, mechanical stresses within the electrode. The aim of the project is to achieve deeper understanding of the behavior of lithium-ion batteries in extreme conditions.

    http://www.wias-berlin.de/projects/ECMath-SE17/