DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Raphael Kruse

Nachwuchsgruppenleiter 'Uncertainty Quantification'

Institut für Mathematik
Straße des 17. Juni 136
10623 Berlin
+49 (0) 30 314 23354
kruse@math.tu-berlin.de
Webseite


Forschungsschwerpunkte

Numerische Analysis für stochastische und raue Differentialgleichungen
Monte Carlo Methoden

Projekte als Projektleiter

  • SE21

    Data Assimilation for Port-Hamiltonian Power Network Models

    Dr. Raphael Kruse / Prof. Dr. Volker Mehrmann / Dr. Matthias Voigt

    Projektleiter: Dr. Raphael Kruse / Prof. Dr. Volker Mehrmann / Dr. Matthias Voigt
    Projekt Mitglieder: Riccardo Morandin
    Laufzeit: 01.06.2017 - 31.12.2018
    Status: beendet
    Standort: Technische Universität Berlin

    Beschreibung

    In this project we will study the modeling of power networks by employing the port-Hamiltonian framework. Energy based modeling with port-Hamiltonian descriptor systems has many advantages, e. g., it accounts for the physical interpretation of its variables, it is best suited for the modular structure of the network, since coupled port-Hamiltonian systems form again a port-Hamiltonian system and it encodes these properties in algebraic and geometric properties that simplify Galerkin type model reduction, stability analysis, and also efficient discretization techniques. To improve the predictions that one obtains from such models we suggest to employ data assimilation and state estimation techniques by incorporating the measurement data. These would allow to take the uncertainty in the measurements and the presence of unmodeled dynamics as well as data and modeling errors into account. The improved predictions can then be used to control the network such that (the expected value of) the load is kept as constant as possible. To control the network we propose to use techniques of model predictive control (MPC) which solve a sequence of finite horizon optimal control problems. The method uses predictions of the state and computes a local optimal control which is then used for the model simulation in the next iteration. This framework is very flexible, since it allows control in real time and the incorporation of nonlinear dynamics and/or inequality constraints. It has already been used successfully within other areas of energy network control. Our new ansatz will also incorporate the stochastic effects into the model predictive control framework using data assimilation. Our vision is to develop numerical methods for network operators that allows the incorporation of model uncertainities for improving simulation and control of power networks.

    http://www3.math.tu-berlin.de/numerik/NumMat/ECMath/SE21/
  • CH-TU25

    Weak convergence of numerical methods for stochastic partial differential equations with applications to neurosciences

    Dr. Raphael Kruse

    Projektleiter: Dr. Raphael Kruse
    Projekt Mitglieder: -
    Laufzeit: 01.05.2014 - 30.04.2020
    Status: laufend
    Standort: Technische Universität Berlin

    Beschreibung

    In this project we develop and investigate novel numerical methods for the discretization of stochastic partial differential equations arising, for instance, in neuroscience. Our numerical methods are based on the Galerkin finite element method combined with suitable time stepping schemes such as the backward Euler method or backward difference formulas.

    http://www.math.tu-berlin.de/fachgebiete_ag_modnumdiff/diffeqs/v_menue/fg_differentialgleichungen/nwg_uq0/v_menue/research_projects/weak_convergence_of_numerical_methods_for_spdes_with_applications_to_neurosciences/