DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr Shalva Amiranashvili

shalva.amiranashvili@wias-berlin.de


Projekte als Mitglied

  • OT2

    Turbulence and extreme events in non-linear optics

    PD Dr. Uwe Bandelow / Dr. M. Wolfrum

    Projektleiter: PD Dr. Uwe Bandelow / Dr. M. Wolfrum
    Projekt Mitglieder: Dr Shalva Amiranashvili
    Laufzeit: -
    Status: beendet
    Standort: Weierstraß-Institut

    Beschreibung

    Many modern photonic devices show complex dynamical features in space and time resulting from optical nonlinearities in active, often nanostructured materials. The project is focussed specifically on high-dimensional dynamical regimes in optoelectronic systems. Such a complex spatio-temporal behavior, in which nearly all modes are excited, is characterized by the fact that, in contrast to e.g. solitons or pulsations, it cannot be reduced to a low-dimensional description in terms of classical bifurcation theory. This so-called optical turbulence can be observed both in a Hamiltonian and in a dissipative context. A mathematical treatment of the resulting multi-scale and multi-physics problems presents major challenges for modelling, numerical, and analytical investigations. A simulation of the mostly 2+1 dimensional PDE-systems requires efficient parallelization strategies, instability mechanisms can be described only in terms of amplitude equations, and multi-scale effects in complex device structures can lead to singularly perturbed dynamical problems.

    http://www.wias-berlin.de/projects/ECMath-OT2/project_OT2.jsp

Projekte als Gast