DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Dr. Soheil Hajian

soheil.hajian@hu-berlin.de


Forschungsschwerpunkte

Numerical Analysis, Scientific Computing, Optimal Control of PDEs

Projekte als Mitglied

  • OT6

    Optimization and Control of Electrowetting on Dielectric for Digital Microfluidics in Emerging Technologies

    Prof. Dr. Michael Hintermüller

    Projektleiter: Prof. Dr. Michael Hintermüller
    Projekt Mitglieder: Dr. Soheil Hajian
    Laufzeit: 01.06.2017 - 31.12.2018
    Status: beendet
    Standort: Humboldt Universität Berlin

    Beschreibung

    A number of emerging key technologies in microbiology, medical diagnostic devices, personal genomics, as well as next-generation low-energy OLED displays and liquid lenses make use of a phenomenon known as electrowetting on dielectric (EWOD). Electrowetting involves the manipulation of small (microscopic) droplets on a dielectric surface by the actuation of the underlying current. In fact, droplets in a typical EWOD device are situated between two separated hydrophobic surfaces, one of which contains an array of controllable electrodes. The air-liquid-solid contact angle can then by changed by varying the voltages on separate electrodes, which causes the droplets to move. Thus, the voltages are a natural choice for influencing (controlling) the motion of a droplet. The project pursues both sharp interface and phase field models, respectively, for the movement of droplets in an EWOD device. Both models make use of a macroscopic description for contact line pinning, which is due to contact angle hysteresis as well as molecular adhesion at the solid-liquid-air interface, for a faithful representation of the droplets velocity and cover different aspects properly. Due to the non-trivial dependencies on the moving interface in the sharp interface context, the proof of existence of an optimal control remains impossible without further restrictive assumptions or constraints, e.g., on the geometry, and the complexity of the phase field model poses severe challenges for a fast (real-time) numerical solution as needed for EWOD devices. For these reasons, instead of computing time-discrete or optimal controls the project work pursues an idea from model predictive control (MPC).

    http://www2.mathematik.hu-berlin.de/~hajianso/ot6/

Projekte als Gast