DE | EN
Startseite
Über uns
Übersicht
Zahlen und Fakten
Organisation
WissenschaftlerInnen
Kontakt
Anfahrt
Stellenangebote
Forschung
Übersicht
Anwendungsfelder
Projekte
Publikationen
WissenschaftlerInnen
Preprints
Institutionelle Kooperation
Archiv 02-14
Transfer
Übersicht
Branchen
Referenzen
MODAL-AG
Spin Offs
Software
Patente
Schule
Übersicht
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Lehrerfortbildung
Sommerschulen
Termine
Presse
Übersicht
Pressemitteilungen
Neuigkeiten
Übersicht
Matheon Köpfe
Zahl der Woche
Neuigkeiten 2002-2014
Veranstaltungen
Übersicht
Workshops
15 Jahre Matheon
Mediathek
Übersicht
Fotos
Videos
Audios
Broschüren
Bücher
Aufgelesen

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Prof. Dr. Alexander Mielke

Gastmitglied im Vorstand

Weierstraß-Institut für Angewandte Analysis und Stochastik
Mohrenstraße 39
10117 Berlin
+49 (0) 30 20372563
alexander.mielke@wias-berlin.de
Webseite

PI in den Projekten OT1 und SE2

Institut für Mathematik, HU Berlin
RUdower Chaussee 25
12489 Berlin
+49 (0) 30 2093 5431


Forschungsschwerpunkte

Angewandte Analysis
nichtlineare partielle Differenzialgleichungen
Kontinuumsmechanik und Halbleitermodellierung
variationelle Methoden für Evolutionssysteme

Projekte als Projektleiter

  • SE2

    Electrothermal modeling of large-area OLEDs

    PD Dr. Annegret Glitzky / Prof. Dr. Alexander Mielke

    Projektleiter: PD Dr. Annegret Glitzky / Prof. Dr. Alexander Mielke
    Projekt Mitglieder: Dr. Matthias Liero
    Laufzeit: -
    Status: beendet
    Standort: Weierstraß-Institut

    Beschreibung

    The aim of the project D-SE2 is to find adequate spatially resolved PDE models for the electrothermal description of organic semiconductor devices describing self-heating and thermal switching phenomena. Moreover, the project intends to investigate their analytical properties, derive suitable numerical approximation schemes, and provide simulation results which can help to optimize large-area organic light emitting diodes.
    Click here for more information

    http://www.wias-berlin.de/projects/ECMath-SE2/index.html
  • SE-AP2

    Pattern formation in systems with multiple scales

    Prof. Dr. Alexander Mielke

    Projektleiter: Prof. Dr. Alexander Mielke
    Projekt Mitglieder: -
    Laufzeit: 01.01.2011 - 31.12.2022
    Status: laufend
    Standort: Technische Universität Berlin

    Beschreibung

    Pattern formation in nonlinear partial differential equations depends on nontrivial interactions between different internal length scales and nonlinearities of the system as well as on the size and geometry of the underlying domain. The challenge is to understand how effects on the small scales generate effective pattern formation on the larger scales. Using well-chosen model problems reflecting the focus applications of the CRC, we will investigate the mathematical foundations of the derivation of effective models for pattern formation in multiscale problems. Controls for the effective models will be used to construct controls for the original system.

    http://www.itp.tu-berlin.de/collaborative_research_center_910/sonderforschungsbereich_910/project_groups/a_theoretical_methods/tp_a5/
  • SE-AP10

    Analysis of multiscale systems driven by functionals

    Prof. Dr. Alexander Mielke

    Projektleiter: Prof. Dr. Alexander Mielke
    Projekt Mitglieder: -
    Laufzeit: 01.03.2011 - 31.03.2016
    Status: beendet
    Standort: Weierstraß-Institut

    Beschreibung

    Many complex phenomena in the sciences are described by nonlinear partial differential equations, the solutions of which exhibit oscillations and concentration effects on multiple temporal or spatial scales. To understand the interplay of effects on different scales, it is central to determine those quantities on the microscale that are needed for the correct description of the macroscopic evolution. Our aim is to develop a mathematical framework for modeling and analyzing systems with multiple scales. In particular, we want to derive new effective equations on the macroscale that fully take into account the effects on the microscale. This will include Hamiltonian dynamics as well as different types of dissipation like gradient flows or rate-independent dynamics. The choice of models will be guided by specific applications in
    • material modeling (e.g., thermoplasticity, pattern formation, porous media) and
    • optoelectronics (drift-diffusion equations, pulse interaction, Maxwell-Bloch systems).

    The research will address mathematically fundamental issues like existence and stability of solutions but will be mainly devoted to the modeling of multiscale phenomena in evolution systems. We will focus on systems with geometric structures, where the dynamics is driven by functionals. Thus, we can go much beyond the classical theory of homogenization and singular perturbations. The novel features of our approach to multiscale problems are
    • the combination of different dynamical effects in one framework,
    • the use of geometric and metric structures for partial differential equations,
    • the exploitation of Gamma-convergence for evolution systems driven by functionals.


    http://www.wias-berlin.de/projects/erc-adg/
  • OT1

    Mathematical modeling, analysis, and optimization of strained Germanium-microbridges

    Prof. Dr. Michael Hintermüller / Prof. Dr. Alexander Mielke / Prof. Dr. Thomas Surowiec / Dr. Marita Thomas

    Projektleiter: Prof. Dr. Michael Hintermüller / Prof. Dr. Alexander Mielke / Prof. Dr. Thomas Surowiec / Dr. Marita Thomas
    Projekt Mitglieder: Dr. Lukas Adam / Dr. Dirk Peschka
    Laufzeit: -
    Status: beendet
    Standort: Humboldt Universität Berlin / Weierstraß-Institut

    Beschreibung

    The goal of the project Mathematical Modeling, Analysis, and Optimization of Strained Germanium-Microbridges is to optimize the design of a strained Germanium microbridge with respect to the light emission. It is a joint project with the Humboldt-University Berlin (M. Hintermüller, T. Surowiec) and the Weierstrass Institute (A. Mielke, M. Thomas), that also involves the close collaboration with the Department for Materials Research at IHP (Leibniz-Institute for Innovative High Performance Microelectronics, Frankfurt Oder).

    http://www.wias-berlin.de/projects/ECMath-OT1/
  • OT-AP1

    Multi-Dimensional Modeling and Simulation of Electrically Pumped Semiconductor-Based Emitters

    PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt

    Projektleiter: PD Dr. Uwe Bandelow / Dr. Thomas Koprucki / Prof. Dr. Alexander Mielke / Prof. Dr. Frank Schmidt
    Projekt Mitglieder: -
    Laufzeit: 01.01.2008 - 31.12.2019
    Status: laufend
    Standort: Weierstraß-Institut / Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Beschreibung

    The aim of this joint project of WIAS and ZIB is the comprehensive and self-consistent optoelectronic modeling and simulation of electrically pumped semiconductor-based light emitters with spatially complex 3D device structure and quantum dot active regions. The required models and methods for an accurate representation of devices, such as VCSELs and single photon emitters, featuring open cavities, strong interactions between optical fields and carriers, quantum effects, as well as heating will be developed and implemented, resulting in a set of tools, that will be provided for our partners in the CRC 787.

    http://www.zib.de/projects/multi-dimensional-modeling-and-simulation-vertical-cavity-surface-emitting-lasers-vcsels http://wias-berlin.de/projects/sfb787-b4/